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ABSTRACT

Variation in the climate acts as an important factor in managing the natural

resources in order to meet the needs of human life for present and future generations.

Future projections of the climate data obtained from the climate models help in

developing the policies for the sustainable use of natural resources. In the present

study, changes in the climate variables  were assessed both spatially and temporally

using Regional Climate Models (RCM) database under Coordinated Regional

Downscaling Experiment (CORDEX) from Centre for Climate Change Research (CCCR),

Pune, for Krishna river basin, India. Uncertainties in the climate variables were reduced

by using Reliable Ensemble Averaging (REA) method. The results suggest that the

ability of REA data performs well throughout the basin except in the upper region of

the Krishna basin. First future period shows around 20 per cent decrease when

compared to the historic period where the other two future periods show a less

change in the precipitation.

Keywords: Climate Data, Regional Climate Models (RCM), Reliability Ensemble

Averaging (REA), River Basin.
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Introduction

The local and global pressures on natural

resources are increasing because of the external

forces like high living standards, anthropogenic

changes, land use and water management

policies etc. In addition, climate change is also

contributing pressure on natural resources

externally.  Generally, the long-term change in

the properties of climate system due to natural

and forced variability and the effects of

anthropogenic activities is known as climate

change. The variations in climate system help in
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altering water availability regionally, selection of

the crop and vegetation based on the

evapotranspirative water demands, salt-water

intrusion in coastal regions, floods and drought

extremes, groundwater recharge, water quality

and other related processes.  The additional stress

developed by this climate change on the natural

resources like water provides a clarity to the

water managers and policymakers for efficient

water supply for future periods (Mondal and

Mujumdar, 2015).  The future water demands will

be more uncertain in addition to the uncertainty

developed due to changes in demography and

climate (Yang et al., 2008).

Global Climate Models (GCMs) are the

coarse resolution climate models projected under

increased global temperatures for large spatial

scales, whereas finer spatial scales climate

models for the better management of the

resources at the basin level. Many studies have

proved that the use of regional climate data for

impact assessment is more reliable compared to

the global climate model data (Chien et al., 2013;

Deshpande, 2014; Demaria et al., 2016). The

climate models possess the biases and

uncertainty from one model to another. The

increase in skill and reliability of multi-model

ensembles compared to the single climate

model projections have demonstrated through

various studies (Giorgi and Mearns, 2003; Tebaldi

and Knutti, 2007). The Reliability Ensemble

Averaging (REA) is the method used to address

the uncertainty developed using different RCMs

(Giorgi and Mearns, 2003; Chandra et al., 2015).

The biases in the REA precipitation data are

corrected statistically by Quantile- Quantile

(Q-Q) mapping which improves the ability to

project the future climate models data for

the impact and vulnerable studies (Piani et al.,

2010).

In India, Krishna river is categorised as the

economical water-scarce and food-deficit basin

(Amarasinghe et al., 2004; Gosain et al., 2006).

The main feature of the basin being high crop

production, the seasonal or regular water

predictions are likely to experience stressed

conditions. It is also evident that the annual

average renewable water availability per person

is less than 500m3/cap/yr (Gosain et al., 2011)

which emphasise the importance of water supply

and demand in the basin. The main objective of

the study is to assess the changes in the climate

variables like precipitation, maximum and

minimum temperatures both spatially and

temporally. The climate model data obtained

from five RCMs of Representative Concentration

Pathways 4.5 (RCP) scenario used in developing

REA of the models. In addition to the REA, the

precipitation is bias corrected by QQ mapping

for projecting the future climate change. The REA

precipitation, maximum and minimum

temperatures are used in simulating the

availability of the water in the river basin using

any hydrological model. The climate variables

thus obtained help water managers and

policymakers in developing the adaptation

strategies for the substantial use of the water

resource.
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Study Area and Data Description

Krishna river  is the fourth biggest river in

India with a total area of 258948 sq. km. It spreads

across four States viz. Karnataka (43.8%), Andhra

Pradesh and Telangana (29.81%) and Maharashtra

(26.36%), India as shown in Figure 1. The basin

lies between 3°10’ to 19°22’ North latitudes and

73°17’ to 81°9’ East longitudes.

The climate of the basin is tropical, with

the average annual precipitation of 960 mm and

the  minimum and maximum temperature of the

Figure 1: Location of the Krishna River Basin

basin are 20.73°C and 32.2°C. Various datasets

with their resolution are given in Table 1.

Data Type Resolution Source

Digital Elevation 30m Advanced Spaceborne Thermal Emission and
Model Reflection Radiometer (ASTER)

Observed 0.5° grid Indian Meteorological Department, Pune
Climate data

Climate 0.5° grid Centre for Climate Change Research (CCCR), Indian Institute of
Model data Meteorology (IITM) Pune. ftp://cccr.tropmet.res.in/iRODS_DATA/

CORDEX-Data

Table 1: Description and Source of the Data
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The DEM projects the minimum,

maximum and mean elevation of the basin as

18m, 1903m, and 518m. Approximately, 50.47

per cent  of the total area falls under 500m to

750m elevation zone. The climate data include

maximum temperature ( Tmax), minimum

temperature (Tmin) and precipitation with the

spatial resolution of 0.5°x0.5° for 132 grid points.

The ensemble of high- resolution past and

future climate projections from regional scales

with a mid-range concentration path (RCP) 4.5

greenhouse gas (GHG) emissions scenario from

CCCR, Indian Institute of Tropical Meteorology,

Pune, India were obtained. The following are five

RCMs (Table 2) data used for the study:

Acronym Full Name

ACCESS Australian Community Climate and Earth System Simulator

CCSM4 Community Climate System Model

CNRM_CM5 Centre National de Recherché Meteorologiques

NorESM 1 Norwegian Earth System Model 1

MPI-ESM-LR Max Plank Institute Earth System Model

Table 2: Details of RCM Models

Among the different RCMS, it is difficult

to choose the most reliable RCM using same

anthropogenic forcing scenarios of GCMs as they

project the inter-model uncertainty. The

uncertainties in the climate model projections

are quantified using REA method.

Reliability Ensemble Averaging (REA)
Method

The REA method proposed by Giorgi and

Mearns, 2003, provides the calculation of best

estimate, range of uncertainty and the reliability

of regional climate model data based on the

ensemble of different climate change

projections.  This method comprises two criteria

as model performance and convergence used in

measuring the uncertainty and reliability of

regional climate change. Chandra et al., 2015

proposed an algorithm for generating the REA

climate variables like Precipitation, Minimum and

Maximum Temperatures of the RCMs. Initially,

model performance criteria carried by computing

the Root Mean Square Error (RMSE) using the

Cumulative Distribution Functions (CDF)

deviations between the observed and simulated

variables by dividing the total data into 10 equal

intervals for the reference period 1975-2005.

Inverse values of the RMSE considered as the initial

weights of the RCMs proportionately with the

sum of all weights equals to one. The model

convergence criterion has been calculated by

considering the CDF deviations between

individual RCMs for future time slices of Future

period 1(2010-2040), Future period 2 (2041-

2070) and Future period 3 (2071-2100) and

weighted mean CDF derived from model

performance criterion.  Further, biases present in

REA variables were corrected using the non-
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parametric quantile method.  The maximum and

minimum temperatures of REA are more similar

to the IMD data with less bias where the REA

precipitation data possess the bias.

Quantile Mapping Method of Bias
Correction

Ensemble mean obtained using the REA

method compared with observed data results in

underestimated precipitation, whereas minimum

and maximum temperatures show better

agreement. Quantile mapping was widely used

statistical bias correction proposed by

Gudmundsson et al., 2012 due to its

computational efficiency and ability to handle

higher order moments. It performs bias correction

based on non-parametric transformation and the

empirical quantile of the simulated and observed

series. In addition, the major strength of the

technique is that it removes the bias from data

through entire range of distribution without any

rior distribution of dataset. Therefore, in the

present study, the authors applied the quantile

mapping to correct the weighted precipitation

series for all the grid points. The statistical

transformation used will derive a function h, such

that new distribution in mapping the modeled

variable P
m

 is equal to the distribution with the

observed variable P
o
. The statistical transformation

obtained from the Gudmundsson et al., (2012) is

as follows:

P
o
 = h(P

m
) (1)

The statistical transformation is modeled

using the non-parametric regression with the

monotonic tricubic spline interpolation. The

smoothing spline fits the fraction of the CDF-

corresponding to observed wet days by assigning

zero to the non-zero of the CDF-corresponding

to observed wet days by assigning zero to the

non-zero values of the modeled data. Figure 2

represents the REA precipitation data with

observed data before and after the transformation

for a grid.

a) Precipitation data without bias correction

b) Precipitation data with bias correction

Figure 2: QQ Map of Observed Vs Modelled REA Precipitation Data
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Results and Discussion

REA method either carries out to improve

the climate model simulations, which poorly

perform in representing the present day climate

over a region or contributes outlier simulations in

the ensemble of the other models. Hence, it helps

in extracting the most reliable information from

each model for better agreement with the

observed data. Figure 3 represents the comparison

of mean monthly precipitation data of observed

and REA data for the four time periods. It suggests

lower average values of monthly precipitation in

REA data throughout the year in the historic and

future periods for the Upper Bhima, Upper Krishna

and Upper Tungabhadhra compared to the

observed values. The other sub- basins

precipitation data propose ensemble model data

and observed data follow the pattern with an

annual change varying from 10  to 20 per cent.

The patterns of the precipitation data in all the sub

basins show a decreasing trend in comparison with

the observed data for all the future periods.

Figure 3: Sub-basin wise variations in the mean monthly precipitation of the REA

climate data of the Krishna river basin for the Historic period (1970-2005), Future I (2010

– 2040), Future II (2041 – 2070) and Future III (2071 – 2099) with respect to Observed

climate data (1970 – 2005).

The historic period temperature data

obtained from the REA method projects has less

variation when compared to the observed data

where the precipitation data exhibits more

variation as shown in Figure 3 for seven sub-basins

of the Krishna River. Hence, the REA precipitation

data with more variations are bias corrected using

quantile mapping technique. The maximum and

minimum temperatures obtained by the REA

method were able to simulate well as it shows

Upper Tungabhadhra Lower Tungabhadhra
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fewer changes when compared with observed

data. Maximum and minimum temperatures of

the observed data compared to the ensemble

model data recommend increased trend in the

patterns for the future periods as shown in

Figures 4 & 5.

Figure 4: Subbasin-wise variations in the mean monthly maximum temperature of the
REA climate data of the Krishna river basin for the historic period (1970-2005), Future I

(2010 – 2040), Future II (2041 – 2070) and Future III (2071 – 2099) with respect to observed
climate data (1970 – 2005)

Figure 5: Subbasin-wise variations in the mean monthly minimum temperature of the
REA climate data of the Krishna river basin for the historic period (1970-2005), Future I

(2010 – 2040), Future II (2041 – 2070) and Future III (2071 – 2099) with respect to observed
climate data (1970 – 2005)

Upper Tungabhadhra Lower Tungabhadhra

Upper Tungabhadhra Lower Tungabhadhra
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The mean monthly maximum

temperature for the future period 2 (2040-2070)

projects  highest values when compared to other

three periods.  Table 3 represents the maximum

and minimum values of the REA data in

comparison with the observed data projecting a

decrease in the precipitation and increase in the

temperature data.
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Quantile Mapping

The climate models ability in predicting

the precipitation data of the sub-basins like Upper

Bhima, Upper Krishna  and Upper Tungabhadra

fails in projecting at the Western Ghats regions

as it shows the maximum variations. Therefore,

the bias in the REA climate model data is reduced

by applying the statistical bias correction to the

REA precipitation data. Spatial variations of the

observed data and bias corrected ensemble

precipitation data for the months of June, July,

August and September for the historic and future

periods are shown in Figures 6 to 10.

Figure 6: Observed mean monthly precipitation of June, July, August, and September
during 1975 -2005

Longitude Longitude

Longitude Longitude
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Figure 7: REA based mean monthly precipitation of June, July, August and September for
Historic period (1975 -2005)

Figure 8: REA based mean monthly precipitation of June, July, August, and September for
Future-I period (2006-2040)

Longitude Longitude

Longitude Longitude

Longitude Longitude

Longitude Longitude
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Figure 9: REA based mean monthly precipitation of June, July, August, and September for
Future-I period (2041-2070)

Figure 10: REA based mean monthly precipitation of June, July, August, and September
for the Future3 period (2071 - 2099)

Longitude Longitude

Longitude Longitude

Longitude Longitude

Longitude Longitude
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Observations were carried out by dividing

the Krishna river basin into four regions such as

the South East (SE), South West (SW), North East

(NE) and North West (NW). Comparison of the

precipitation data in the Figures 9&10 suggest

highest observed value in the SW region of the

basin than in the historic period, which projects

the reliability of the models in projecting the

outliers of the precipitation data. The other

regions project similar variations of the historic

precipitation data when compared to the

observed data. For the future periods the mean

monthly precipitation changes varying between

1mm/day to 8mm/day (Figure 7), 3mm/day to

10mm/day (Figure 9) and 3mm/day to 12mm/

day (Figure 10).

Conclusion

In this paper, Reliability Ensemble Average

(REA) method is used in assessing the impact of

climate change on the Krishna river basin. The

REA data obtained from the five climate models

are in good correlation with the observed climate

data obtained from IMD for the middle and lower

regions of the Krishna river basin. The mean

monthly precipitation data for the historic period

obtained from the REA shows fewer variations in

the Middle Krishna, Lower Krishna, and Lower

Tungabhadra. Around 20 per cent decrease in

the precipitation data in the Future 1 period is

observed when compared to the Historic period.

Therefore, hydrology of the river basin simulated

using the climate data obtained from REA for the

Future periods help water managers and

policymakers in developing the adaptation

strategies for proper utilisation of resources.
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